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Abstract

This study is concerned with the understanding and modeling of the compressive response of open cell foams. The
response starts with a nearly linear elastic regime which terminates into a limit load followed by an extensive load pla-
teau. The plateau, which is responsible for the excellent energy absorption capacity of foams, is followed by a second
stiff branch. Results from polyester urethane open cell foams with relative densities of about 0.025 are used to illustrate
this behavior using experiments coupled with several levels of modeling. The experiments include characterization of the
microstructure and the properties of the base material and measurement of the compressive response of the foams of
various cell sizes.

A sequence of models for predicting the complete response of such foam is developed. The foam is idealized to be
periodic using the space-filling Kelvin cell assigned the major geometric characteristics found in the foams tested. The
cells are elongated in the rise direction, the ligaments are assumed to be straight, to have Plateau border cross-sections
and nonuniform cross-sectional area distribution. The ligaments are modeled as shear-deformable extensional beams
and the base material is assumed to be linearly elastic. Prediction of the initial elastic moduli are addressed in Part
I. Closed form expressions for the material constants are presented as well as results using a FE model of the charac-
teristic cell. Comparison between measurements and predictions is very favorable. The paper finishes with results from a
limited parametric study of the elastic moduli. The results demonstrate that inclusion of the geometric complexities
mentioned above is essential for successful prediction of the moduli of such foams. The nonlinear parts of the response
including the foam crushing behavior are addressed in Part II.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cellular microstructure is widely used by both nature and man to conserve materials and reduce weight
in materials and structures. Natural applications include most woods, cork, stalks of plants, cancellous
bone, sponge, coral, etc. The manufacture and use of synthetic cellular materials which mimic nature have
seen an enormous increase in the last 40 years where today they may be one of the most widely used man-
made classes of materials. These include space filling structural foams and their two-dimensional counter-
parts honeycombs. In these materials, performance is optimized primarily by geometric arrangement of the
solid in space to form an interconnected network of cells with nearly straight edges. The cell faces are often
open (open cells) and other times covered by plates or membranes (closed cells). Synthetic cellular materials
can be made from all major material categories including metals, polymers, ceramics, paper and carbon.
The most commonly used honeycombs have hexagonal cells although other cell shapes (circular, rectangu-
lar, triangular) are also available. By contrast, foams consist of polyhedra which typically have 10-17 faces.

A major advantage of cellular materials is that they can be manufactured with relative ease to varying
densities which are only a few percent (~2-10% but can be as low as 0.3%) of the density of the base mate-
rial. They have excellent energy absorption characteristics and are widely used for shock mitigation in vehi-
cles of all types, in packaging and in cushioning. They are also widely used as cores in sandwich plates and
shells which is one of the most effective weight saving design options for structures in a variety of applica-
tions. The advent of carbon and ceramic foams has recently enabled the use of such construction in high
temperature applications in jet engine nacelles and rocket nozzles.

The design and use of this class of materials require that the microstructure be related to the properties
(mechanical, thermal, acoustic, etc.). Gibson and Ashby’s book (1997) gives an excellent review of the state
of the art as well as basic information on cellular materials. Hilyard and Cunningham (1994), Weaire and
Hutzler (1999), a recent MRS Bulletin (2003) and the book by Ashby et al. (2000) provide articles on a
broad range of foam issues from manufacturing to application.

The present two part series of papers deals with the mechanical behavior of open cell foams. Fig. 1 shows
the compressive stress (o = force/undeformed area) -displacement (6/H) response of a polymeric open cell
foam which is characteristic of most cellular materials. It consists of a nearly linear elastic regime which
terminates into a limit load. This is followed by a load plateau which extends to an average strain of about
50% followed by a second stiff branch. The polymer in question is a viscoelastic solid so on unloading a
hysteresis is traced. The hysteresis loop is initially open at zero load but with time, as the material relaxes,
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Fig. 1. Compressive stress—displacement response characteristic of many foams.
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it closes at the origin. The load plateau is responsible for the excellent energy absorption characteristics of
such foams while the recovery of deformation makes them useful in cushioning.

The characteristic shape of the loading part of the response in Fig. 1 is found in most foams of both open
and closed cell types. The task at hand is to relate the deformation history of the microstructure to the main
variables of this response {E*, o;,5p, Agp}. It was recognized early on that the initial stiff branch of the re-
sponse involves stable elastic deformation of the microstructure. This has led to an evolution of microme-
chanical models of increasingly more representative nature (e.g., Gent and Thomas, 1963; Gibson and
Ashby, 1982; Choi and Lakes, 1995; Warren and Kraynik, 1997; Zhu et al., 1997). Simultaneously it
was observed that honeycomb, crushed in plane, exhibits very similar response to foams (e.g., Patel and
Finnie, 1970; Gibson et al., 1982). Because of the simplicity afforded by its 2-D microstructure, honeycomb
was used extensively as a model material to elucidate the events past the first load peak. It was clearly dem-
onstrated that the load peak corresponds to the onset of an instability which localizes and then spreads at a
nearly constant load through the specimen (Shaw and Sata, 1966; Shim and Stronge, 1986; Klintworth and
Stronge, 1988; Gibson et al., 1989; Papka and Kyriakides, 1994, 1998a,b,c; Triantafyllidis and Schraad,
1998). When the whole specimen is crushed (densified) the response becomes stable again. The elastic prop-
erties and the onset of the instability can be found from characteristic cell type analyses (some using simple
strength of materials models). The plateau stress and its extent require more extensive finite size models
which simulate the whole test from the elastic regime to densification.

The work on honeycombs has clearly shown that modeling of the response and accurate prediction of
the variables of interest require: (1) Accurate representation of the geometry of the microstructure and
(2) measurement and appropriate modeling of the constitutive behavior of the base material. The present
study will be guided by these requirements. In Part I results from crushing experiments on polymeric open
cell foams are presented and discussed. Following is characterization of the morphology of the microstruc-
ture and aspects of the constitutive behavior of the polymer base material. An idealized model is then devel-
oped and used to establish the elastic properties of the foam using several models with increasingly more
representative features. Part Il deals with the modeling of the onset of instability and of the postbuckling
response associated with the load plateau.

2. Foam processing and morphology

The foams analyzed in this study are polyester urethane foams manufactured by Foamex. They were se-
lected because they could be obtained in a variety of cell sizes in approximately the same material system.
Results from five such foams with nominal cell sizes of 3, 10, 20, 45 and 100 pores per inch (ppi) will be
considered. Following is an outline of the processing followed by a study of the morphology of the foams.

2.1. Processing

The basic ingredients of flexible urethane foams of the type considered in this study are ester resin (or
polyol), diisocyanate, water, catalysts and surfactants (e.g., Artavia and Macosko, 1994; Priester and
Turner, 1994; Foamex, 2003). These are introduced in a controlled manner in a mixer (in some cases air
is added). CO, released from the isocyanate-water reaction forms bubbles which expand. Simultaneously,
the chemical reaction which is highly exothermic produces a cross-linked polyester urethane network (gel-
ling reaction). The pressure in the gas bubbles causes expansion resulting in volume increase of 4050 times.
The packing of the bubbles is decided during the expansion. When their volume fraction exceeds about 75%
their walls start to intersect forming polyhedra. Fully developed polyhedra consist of a framework of inter-
connected slender ligaments which serve as channels of flow. The sides of the polyhedra are covered with
thin membranes. Eventually the polymer starts to gel and at this time the gas bubbles rupture the thin
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Fig. 2. Micrograph showing cellular microstructure of a polyester urethane foam (100 ppi).

membranes opening the cells. What is left behind is illustrated in the micrograph in Fig. 2. The timing of the
cell opening is crucial in getting structurally sound materials. The catalysts help adjust the foaming chem-
istry and time while the surfactants help mix incompatible components in the reaction and stabilize bubble
expansion. The process is relatively fast lasting between 2 and 4min. Cell size is determined by the surfac-
tant type and amount as well as by the mixing speed and back pressure. In some of the foams the mem-
branes are removed by mechanical shock while in others they are removed chemically. The cross-section
of the ligaments is in the form of a three cusp hypocycloid known as Plateau border (1873) and the most
common junction of ligaments has four members.

2.2. Cell morphology

The Foamex-SIF foams analyzed are polyester urethane material systems with approximately the follow-
ing composition by weight: ester resin 100 parts, diisocyanate 43-50 parts, water 3.3-3.8 parts, surfactant
1-4 parts and catalysts 0.5-2.0 parts. Their nominal cell sizes were: 3, 10, 20, 45 and 100 pores per inch
(ppi). Measured cell sizes appear in Table 1 (4, is the average cell height in the rise direction based on
20-30 measurements). This type of foam is used in filtering where a high degree of uniformity and clean-
liness of the cellular microstructure (or low polydispersity, Kraynik, 2003) is a requirement. Included in
Table 1 are the maximum and minimum heights of cells measured in each foam. As a measure of
polydispersity we have chosen the ratio of one standard deviation (X)) of the measured values of /; to
the average value of the measurements. The results in Table 1 show that, with one exception, this ratio

I}ilc))lr?leltric and material parameters of reticulated polyester urethane foams analyzed

Foam 4 in 7| min—max in i A /J_* (%) E_T (%) @ (%) O psi Gp psi Aep (%)
ppi (mm) (mm) hl E E (kPa) (kPa)

3 0.365 (9.27) 0.201-0.427 (5.11-10.8) 0.122 1.432 2.18 0.227 0.0701  0.584 (4.03) 0.56 (3.9) 46

10 0.292 (7.42) 0.263-0.328 (6.68-8.33) 0.066 1.360 2.47 0.181 0.0707  0.65 (4.48) 0.62 (4.3) 44

20 0.170 (4.32) 0.153-0.185 (3.9-4.7) 0.050 1.281 2.36 0.200 - 0.71 (4.9) 0.69 (4.8) 47

45 0.0714 (1.81) 0.064-0.084 (1.6-2.1) 0.070 1.256 2.44 0.215 0.103 0.84 (5.8) 0.83(5.7) 47
100 0.0302 (0.767)  0.025-0.034 (0.64-0.86) 0.079 1.233 2.82 0.229 0.128 0.92 (6.3) 0.90 (6.2) 45
p =~ 0.04321b/in.* (1.19g/cm?); E ~ 10ksi (69 MPa); v = 0.49; X, = standard deviation.
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is less than 0.1 which confirms that the microstructure is unusually uniform for polyester urethane foams.
This is achieved by the amount and type of surfactant used, as well as by the mixer speed and back pressure.

The five foams had relative densities (p*/p) ranging between approximately 2.2-2.8% (Table 1); in other
words their relative densities have the same order of magnitude. This, coupled with the relatively uniform
cell sizes in each foam, indicated that the microstructure might scale with cell size. This was indeed found to
be true, at least to first order, from comparisons of the microstructures of the 5 foams analyzed using opti-
cal and scanning electron microscopy. An example of such a comparison is shown in Fig. 3 where optical
micrographs of three foams [(a) 3 ppi, (b) 10ppi and (c) 45 ppi], enlarged by different amounts to make the
cells approximately the same size, are shown. The microstructures are seen to be similar supporting its scal-
ing with cell size.

The cell morphology was found to be in general disordered consisting of a variety of cell shapes. Matzke,
in his classic work (1946) in which he characterized 600 soap bubbles in a foam he assembled, reported a
great variety of irregular polyhedra. We conducted a similar study which involved 30 cells extracted from
the 3 ppi foam. The results are summarized in Table 2. Polyhedra with 9-17 faces were found with the aver-
age number of faces being 13.7. This matches exactly the corresponding average number reported by Mat-
zke. The most numerous (7) polyhedra were 14-sided with 15 and 13 sides following. Once again the trend
matches that reported by Matzke. The faces had 3-7 edges with the average number being 4.94 edges per
face. This compares to Matzke’s average of 5.12 edges per face. We attribute this difference to the much
larger number of samples in Matzke’s study as well as to differences in connectivity between a low density
soap foam and polymeric foams.

Fig. 3. Photomicrographs showing side views of three different size cells: (a) 3ppi, (b) 10ppi and (c) 45 ppi.
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Table 2

Geometric characteristics of cells of a 3ppi polyester urethane foam

Polyester urethane open cell foam Number of edges

No. hy (in.) A Number of faces 3 4 5 6 7
1 0.360 1.443 13 0 1 10 2 0
2 0.361 1.243 15 0 3 7 4 1
3 0.395 1.506 14 0 4 7 2 1
4 0.409 1.560 17 0 3 10 3 1
5 0.349 1.475 14 0 4 4 6 0
6 0.400 1.452 16 2 4 5 4 1
7 0.405 1.427 14 0 3 8 3 0
8 0.391 1.484 16 0 2 8 6 0
9 0.406 1.468 16 0 3 8 3 2
10 0.427 1.546 17 1 3 8 4 1
11 0.357 1.264 15 1 2 9 3 0
12 0.397 1.586 12 0 0 12 0 0
13 0.427 1.793 15 1 4 5 5 0
14 0.334 1.487 11 0 2 8 1 0
15 0.394 1.634 12 0 5 5 2 0
16 0.366 1.510 14 0 5 5 4 0
17 0.365 1.498 10 1 4 5 0 0
18 0.201 1.065 9 0 7 2 0 0
19 0.334 1.292 14 1 2 9 2 0
20 0.351 1.614 11 0 2 8 1 0
21 0.355 1.121 14 0 2 7 5 0
22 0.352 1.455 13 0 4 6 3 0
23 0.410 1.599 17 1 7 5 3 1
24 0.368 1.505 13 0 6 5 2 0
25 0.320 1.285 13 0 4 8 1 0
26 0.318 1.296 14 0 2 8 4 0
27 0.375 1.340 15 0 6 3 6 0
28 0.321 1.285 12 1 2 7 2 0
29 0.378 1.360 15 0 3 8 4 0
30 0.326 1.369 11 0 4 4 3 0
Average 0.365 1.432 13.7 4.94 edges/face

p———05mm

Fig. 4. (a) A typical foam ligament and (b) cross-sections taken along its length.
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The cells of Matzke’s foam did not have any preferential orientation because of the special way the soap
foam was assembled (constructed manually bubble-by-bubble). The foams analyzed in this study exhibited
some anisotropy in the shapes of the cells in the form of elongation along the rise direction (see Fig. 3). The
anisotropy was quantified for each foam by comparing the maximum height of cells to their lateral dimen-
sions (4 = h/h,; e.g., see Table 2). The mean values of the A’s of the five foams analyzed are reported in
Table 1. They vary from about 1.43 to 1.23 with the values decreasing with cell size. (Huber and Gibson
(1988) reported similar values of anisotropy for a group of polyurethane foams.)

H ¢ in (mm)
61 e 0.095(2.41)
AE) o o 0.118 (3.00)
8 ® 0.170(4.32)
A, w 0200 (5.08)
T 41 A 0.210(5.33)
o —fE)=86c"+ 57+ 1
2_
i \lﬂmﬂm.ﬁ_ﬂf/m
0 T T T T T T T T T O
-0.5 0.5
—=E(=x/4)

Fig. 5. Measured variation of ligament cross-sectional area along their length fitted with function f{(¢).

Fig. 6. Micrographs showing three four-ligament foam nodes. (a) and (b) 100ppi, and (c) 45 ppi.
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The nearly linear members which form the edges of the polyhedra, often called struts, will be referred to
as ligaments. Ligaments were surgically extracted from the three coarser foams and used to establish their
geometry. Fig. 4a shows a SEM micrograph of a typical ligament. Several ligaments were potted in a wax
compound and sectioned along the length using a microtome. Fig. 4b shows a set of cross-sections obtained
in this manner. The ligaments are nearly linear and have the characteristic three-cusp hypocycloid cross-sec-
tion (Plateau borders). The area of the cross-section increases as the junctions (nodes) with other ligaments
on either end are approached. Measurements of length and area distribution were performed and a sample
of the results is presented in Fig. 5. The cross-sectional area A(¢) normalized by the value at mid-span, Ao, is
plotted against the normalized length. The data were fitted with the following symmetric function:

A(E) = Aof (&) = Ao(al +bE +1), &=x/L. (1)

The constants ¢ = 86 and b = 1 were found to yield a good fit of the data.

Fig. 6 shows micrographs of three ligament nodes taken from 100 and 45 ppi foams. They are all junc-
tions of four ligaments which are by far the most commonly occurring ones. The nodes are seen to have
smooth curved surfaces while simultaneously they are significant concentrations of material. This and
the nonuniformity of the ligament cross-sections will have to be appropriately represented in modeling.
Representation of the ligaments as simple uniform cross-section Bernoulli-Euler beams, adopted in most

modeling efforts to date, is an oversimplification appropriate only for foams of the lowest relative densities
(p*/p ~ 0.1% or less, Kraynik, 2003).

3. Foam compressive response

Compression tests in the rise and transverse directions were conducted on each of the five foams used in
the study. The tests were performed between parallel rigid platens with ground surfaces, under constant
displacement rates. For the four smaller cell foams the specimens were approximately 5.5in. cubes. For
the 3ppi foam the specimen was 6in. tall by 12in. square. The general characteristics of the o—0 responses
(rise direction) are similar to the one shown in Fig. 1. Fig. 7a shows the loading part of the responses of the
five foams measured at a displacement rate of B JH="15x 1073 s7! (H = height of the specimen). As we
observed earlier, the microstructure scales with the relative density. Since the relative density did not vary
significantly in these foams, all aspects of the major characteristics of the five responses are similar. The
major parameters of the responses are summarized in Table 1 and are seen to be of similar order of

1
oy, Polyester Urethane Foams ppi G o 1 Polyester Urethane Foam 45 ppi
(psi)0 o Rise Direct. 6 o
] | (kPa)
067 Transv. Direct. -4
0.4 1
L2
0.21 5
O 3 -1 [ S L
o ox10s % =75x10%s?
0 T T T T T 0 0 . . . T T 0
0 10 20 30 40 50 60 0 10 20 30 40 50
(@) — 3, /H, (%) (b) — > 3/H®%)

Fig. 7. (a) Comparison of rise direction compressive stress—displacement responses from foams of five cell sizes. (b) Comparison of rise
and transverse direction compressive responses of 45 ppi foam.
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magnitude. Differences are partly due to the relatively small variations in relative density but also to differ-
ences in the anisotropy which was found to get reduced with cell size.

The cell anisotropy causes a difference between the compressive response in the rise direction (x) and the
one corresponding to a direction normal to it (say, x,; transverse direction). The two responses measured in
the case of the 45 ppi foam are compared in Fig. 7b. The initial modulus of the transverse response is smal-
ler by about a factor of two (see Table 1). In addition, no load maximum is recorded and the extent of the
stress plateau is shorter. Fig. 8a shows the loading part of transverse direction responses measured in four
of our foams. The general trends are similar to those of the 45ppi foam (see similar results in Fig. 2a of
Huber and Gibson, 1988). The initial moduli measured in these responses are listed in Table 1 under E3.
More on the differences between the rise and transverse directions responses will be discussed in Part II
of this series in the light of calculated results.

The mechanical properties of the foam polymer depend on the rate of loading (viscoelastic behavior).
This reflects also on the compressive response of the foam. Fig. 8b shows a set of rise direction responses
measured at displacement rates spanning four decades. As the rate increases the initial modulus stiffens, the
load maximum increases and the whole stress plateau moves to a higher stress level. Clearly, a complete
modeling of the foam requires a viscoelastic characterization of the polymer.

The elastomeric polymer also exhibits Mullins’ effect (1948, 1969) which implies that the material re-
sponse in the first load cycle is stiffer from subsequent cycles. Fig. 9a shows how this affects the compressive
response of the foam. Shown are results from six load—unload cycles with a S5min relaxation time between
each cycle. The first cycle produces the highest initial modulus and load plateau. The second cycle exhibits a
significant drop in the plateau stress while subsequently the reduction per cycle is relatively small. By the
sixth cycle the material has essentially been stabilized and the responses repeat. We found that the material
recovers fully after a wait of at least 48h and the highest response is repeated. All test results that will be
analyzed in this study are from fully rested foams.

Some foam chemists believe that the polymer flow resulting from the foaming process may cause pref-
erential alignment of the long molecules of the material along the ligaments. These characteristics may not
be casily achievable in bulk material. Thus, it is preferable that the mechanical properties of the polymer be
measured directly from foam ligaments. This is a relatively difficult task because of the small sizes and the
small loads involved and because of the relatively large strains that the ligaments must be stretched to. A
small microscope testing stage, suitably modified, was used to tests ligaments from the 3 ppi foam.

The overall lengths of such ligaments are of the order of 0.12in. (3mm) and the load required is of the
order of 20g. The stage was equipped with a 500g load cell and a miniature LVDT for measuring the

{ Polyester Urethane F: r : | 6
G, 1 { Polyester Urethane Foams 45 G,, 0.1 Polyester Urethane Foam 8 -75 s
(psi) 100, - 6(kPa) G H 102, b On
0.81 ppi 6 1 X102 kPa
i r (psi) o) | (kPa)
0.61 ' L4
3 x10°®
L T
L 0.4 I
0.4 1
2 -2
0.21 5 0.2
2 =60x 10% [
0 , , , - , 0 0 3PPl
0 10 20 30 40 50 60 0 10 20 30 40 50 60
@) ——— 8,/ H, (%) (b) — &,/ H, (%)

Fig. 8. (a) Comparison of transverse direction compressive stress—displacement responses from foams of four cell sizes. (b) Effect of
crushing rate to compressive response of 3 ppi foam.
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Fig. 9. (a) Compressive stress—displacement responses of 3ppi foam (Smin rest time allowed between each load cycle). (b) Uniaxial
stress—strain responses measured in single ligament (Smin rest time allowed between each load cycle).

displacement. Closed loop control was added to it so that it can run at selected rates either in load or dis-
placement control. The nodes of the ligament were bonded to two small plates which were then clamped in
the device. The ligaments were tested at different displacement rates.

Fig. 9b shows a set of load—unload stress—strain results up to a strain of about 20% from a test at a strain
rate of ¢ = 7.5 x 107* s~!. The material is rubber-like and exhibits Mullins’ effect in the first loading cycle
but subsequently the response stabilizes. In this strain range, after the first cycle the material is almost lin-
early elastic. The slender hysteresis loops traced are mainly due to rate dependence.

The small size of the ligaments, the nonuniform and special shape of their cross-section, small initial cur-
vature in the ligaments, difficulties in clamping the ends, and uncertainty about the exact size of the test
section all contribute uncertainties to these measurements. They are thus to be considered of qualitative
value. Furthermore, it is not known to what extent the mechanical properties of the four foams with smaller
cells differ from the one tested.

4. Kelvin cell foam model

Efforts to model foam mechanical behavior are numerous although most are limited to the prediction of
just the initial elastic constants (e.g., elastic modulus, Poisson’s ratio and shear modulus). The most repre-
sentative models assume some cellular microstructure (usually regular), treat the ligaments as beam col-
umns, and use elementary strength of materials to evaluate the deformation of representative
microsections. Early examples of such models include Gent and Thomas (1963) who used a cubical cell lim-
ited to just axial deformations; Ko (1965) used a cell microstructure motivated by hexagonal packing of
bubbles and calculated the properties; Menges and Knipschild (1975) used a part of a cell to show that both
bending and membrane deformation affect the properties; Gibson and Ashby (1982, 1997) used a cubical
cell in which ligaments bend to get the correct order of magnitude dependence of the elastic constants
on the relative density (see also Choi and Lakes, 1995).

The aim of the present effort is to model all major aspects of the compressive response of open cell foams
seen in Fig. 1. The geometry will be idealized to be periodic by adopting the regular, 14-sided polyhedron of
Lord Kelvin shown in Fig. 10 (Thompson and Lord Kelvin, 1887) which will be referred to as the Kelvin
cell. The cell is space filling and consists of 6 squares and 8 hexagons with all edges being of the same length
(¢). In this case the cell dimension is # = 2v/2¢. In the analyses that follow an additional simplification will
be made by neglecting the material rate dependence and the small nonlinearity observed in the uniaxial tests
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(b)

Fig. 10. (a) Cluster of 14-sided Kelvin cells. (b) Geometry of foam ligaments.

on ligaments. The material will be assumed to be linearly elastic with modulus £ and Poisson’s ratio v. All
foams tested will be assumed to be made of the same material with the two material constants coming from
best estimates based on the measurements made on the 3 ppi ligaments.

Prediction of elastic constants of Kelvin cell foams have been performed amongst others by Dement’ev
and Tarakanov (1970a,b), Warren and Kraynik (1997), Zhu et al. (1997) and Pradel (1998). The ligaments
were considered as Bernoulli-Euler (B-E) beams of various cross-sections (squares, circles, equilateral tri-
angles, Plateau borders). The present study builds on these results by considering the effect of the following
additional factors:

(a) Ligaments with nonuniform Plateau borders cross-sections are considered.
(b) The foam is allowed to be anisotropic.

(¢) The amount of material in the nodes is represented more accurately.

(d) The effect of shear deformation is considered in beam models.

4.1. Ligament geometry

The ligaments have length £ and a three-cusp hypocycloid cross-section as shown in Fig. 11. The cross-
section is defined by the radius r and ry = r(0). The cross-sectional area varies along the length according to
expression (1). The area and moments of inertia of this section are given by:

1
A= (\/§ - g)rz =C? L=l.=5; (20\@ - 11n)r4 = 0.003479/*. )

The volume of the solid is governed by the geometric variables (¢, o). They will appear in the elastic mod-
uli through their ratio ry/¢ = 7.

4.2. Anisotropy

Most polymeric foams exhibit some anisotropy in the form of elongation of the cells in the rise direction.
This type of anisotropy is introduced to our Kelvin cell foam in the following arbitrary but simple manner.
All ligaments with a projection in the x,-direction are elongated to ¢/v/2 cos o (o > n/4) while the length of
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| | |

c-C
Fig. 11. Definition of geometry of foam ligaments.

ligaments in the plane normal to x; remains ¢. This change makes the height of the cell #; = 2v/2/tano
while the width remains /#, = 2v/2¢. Thus, the anisotropy parameter . becomes
h m
Z:h—;:tana, a}z. (3)
Fig. 12 shows the effect of this anisotropy on a cluster of Kelvin cells. The space-filling character of the
cell is retained but the cells are elongated in the x;-direction. (Dement’ev and Tarakanov (1970b) used a
similar geometric distortion of the Kelvin cell to represent anisotropy.)

4.3. Volume of material at nodes

In the majority of the analytical models for elastic properties of foams mentioned above, the ligaments
are represented as slender beams of length ¢, with uniform cross-section (4). The beams rigidly connect to

2/2ftan a

fe—2.J2 f—

Fig. 12. Cluster of anisotropic Kelvin cells.
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each other at the nodes. The volume of the beam is represented as A¢. In other words, the intersection of the
beams at the nodes is neglected. For our nonuniform beams this approach results in the following expres-
sion for the relative density of anisotropic Kelvin foams

p* V2 4+ cosa| r\2 T
(7). =23 @

—=0.3691 | ———

o 3sina
where the square bracket reduces to 1 for the isotropic case. The proportionality of the relative density to
the second power of /¢ (7) repeats for beams of other cross-sectional shapes by replacing it with a corre-
sponding nondimensional geometric variable.

Dement’ev and Tarakanov (1970a) avoided the problem of material distribution at the nodes by making
their nodes rigid and of fixed volume. The deformable beams then connect to the surface of a node rather
than to its center. The issue was also noted in Gibson and Ashby (1982) but was neglected in most of their
subsequent works.

In the present study the excess material at the nodes was removed (strictly for the purposes of calculating
the volume of the ligaments). This was done by cutting the ends of the beams with appropriately chosen
smooth curved surfaces. Fig. 13a shows a node generated by this process. Although not a perfect match
it is seen to be a good approximation of actual foam nodes like those in Fig. 6.

Taking into account the material removed results in a new relationship between the relative density and
7. For isotropic foams the relationship is shown graphically in Fig. 14 where it is compared to Eq. (4). For
the corrected foam the relative density is proportional to 7'7*° which makes the difference with Eq. (4) quite
significant. The amount of material removed depends on the area distribution function A(¢) and must be
calculated for each case separately. The case of uniform cross-section is included in Fig. 14 for comparison.
In this case the correction for the volume at the nodes has a smaller effect.

Similar corrections were performed for several anisotropic cases that will be considered below. In all
cases Eq. (1) was adopted for 4A(¢) and a powerlaw relationship (fit) was established for their relative den-
sity of the type

I ro\”"
2oi(3).
0 {
Results for various values of 4 are listed in Table 3. Included for comparison are results for the uniform
cross-section ligament. Henceforth these values will be adopted in all calculations performed on foams.

(a)

Fig. 13. (a) A Kelvin cell node of four converging beam ligaments with intersecting material removed. (b) Same node as represented by
solid FEs.
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Fig. 14. Relative density vs. ro/¢ for Kelvin cells with and without the correction for the material at the nodes.

Table 3

Fit parameters for corrected relative density powerlaw relationship to 7 for variable cross-section ligaments

A n k

1 1.7392 0.1803
1.1 1.7426 0.1791
1.2 1.7433 0.1637
1.3 1.7449 0.1580
1.4 1.7474 0.1350
Unif. Xsc 1.8968 0.1395

4.4. Effect of shear deformation

The foams of interest have relative density in the range of 1-5%. Ligaments of foams with even this small
solid content are not very slender. As a result, when treated as beams, a Timoshenko type correction should
be included for the additional deformation resulting from shear stresses. The calculations that follow are
energy based and thus the correction is introduced in the strain energy due to the shear force V" as follows:

1/2 VZ ( é) Q

_ *(2)
Us= 71/2/3 264 bz O (5)

£d¢  where [)’:%/
y z

The second integral is over the cross-section of the ligament shown in Fig. 11 with Q being the first mo-
ment of area about the y-axis (b(z) =width). For this cross-section = 1.24.

4.4.1. Beam models

The elastic moduli can be evaluated in closed form by treating the ligaments as Bernoulli-Euler beams
and including the effect of axial and shear deformations. A representative microsection can be found for
each loading of interest. Fig. 15 shows three examples of free-body diagrams of microsections used to estab-
lish the elastic modulus in the rise direction E7 and Poisson’s ratio vi, (a), the bulk modulus x* (b), and the
shear modulus Gj; (c), for foams with an anisotropy 4 > 1. Drawn in bold lines are the parts that are con-
sidered in each case. Figures similar to the ones in Fig. 15a and ¢ can be drawn for uniaxial loadings in the
2- and 3-directions and for shear loading in the 1-2 and 2-3 planes (see also Zhu et al. (1997) who consid-
ered similar microsections of isotropic foams).

The axial force (N), moment (M), shear force (V), and torque (7) in each ligament are established in
terms of the applied far field loads. The corresponding strain energy is then given by:
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(@) (b) ()

Fig. 15. Free body diagrams used to derive closed form expressions for the Kelvin cell (a) axial modulus E} (b) bulk modulus and (c)
shear modulus Gj;.

1/2 NZ(é) 1/2 MZ(é) 1/2 VZ(&) 1/2 TZ(&)
= /d /d /d /d 6
u /l/zzEA@) “/1/22151(:) A T “/mzaf(f) 2 (6)

where the sectional properties 4 and [ are given in Eq. (2) and E and G are the Young’s and shear moduli of
the linearly elastic base material. The torsional rigidity GJ based on elasticity (includes effect of warping) is
G x 0.00217* (Warren et al., 1997). For uniaxial compression along the x, x» and x5 directions (Fig. 12) and
for hydrostatic pressure loading, ligaments do not twist and the last term in (6) drops out.

The calculations associated with these models are somewhat lengthy but straightforward. As a result de-
tails will not be presented here. Expressions for each material constant are listed in Table 4, Panel A with
definitions of auxiliary constants given in Table 5. The results in Table 4, Panel A do not include the effect
of shear as shear makes the expressions too lengthy. The moduli are expressed in terms of the geometric
variable 7, the anisotropy 4 (= tana), the elastic base material constants (£, v), constants C; which depend
on the cross-sectional area distribution function f{¢), and constants D; chosen for algebraic convenience. In
case either a different cross-sectional area is selected, or a different f{ &), then constants C; in Table 5 must be
reevaluated. Because the correction for the material at the nodes depends on the anisotropy, it is not pos-
sible to present general moduli expressions for anisotropic foams in terms of the relative density as is com-
mon practice. Sample results which also include the effect of shear deformations are listed in Table 4, Panel
B. These reduce to the results in Table 4, Panel A if the section correction factor f is assigned a zero value.

Results for two degenerate cases, the isotropic foam, and the isotropic foam with uniform ligament
cross-section (f'=1) are included in the tables. Isotropy simplifies the expressions significantly. When in
addition f'=1, comparison with results of previous works becomes possible. Zhu et al. (1997) developed
expressions for { E*,v*, G*,k*} for general cross-section beams. Their results match the present ones for
beams of general cross-section if the effect of shear, the correction for the material at the nodes, and the
warping correction of the torsional rigidity are neglected. The same is true for similar results developed
by Pradel (1998) (quoted in Laroussi et al., 2002). If in addition axial deformations are neglected, results
in Warren and Kraynik (1997) match the present ones. The expression for E7 including the effect of anisot-
ropy in Dement’ev and Tarakanov (1970b) is also in agreement with the present results under the simpli-
fying assumptions of their model. The quantitative effect of the additional factors considered in the present
models on the elastic constants will be discussed in Section 4.4.3.



Table 4
Elastic constants of anisotropic and isotropic Kelvin cell foams (Panel A); including the effect of shear deformations (Panel B)
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Table 5
Geometric and other constants which appear in elastic moduli in Table 4

Anisotropic/non-uniform XSC Isotropic/non-uniform XSC Isotropic/uniform XSC
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4.4.2. Characteristic cell and numerical models

Because of the regularity and periodicity of the microstructure chosen, most of the mechanical properties
of interest can be evaluated by considering either the characteristic cell or an assembly of characteristic cells
along with appropriate periodicity conditions. The characteristic cells of the isotropic and anisotropic Kel-
vin foams are drawn in grey in Figs. 10 and 12 respectively. The characteristic cell for the anisotropic mate-
rial is shown isolated in Fig. 16. The periodicity conditions for a single unit cell can be expressed as
follows: Let the three pairs of opposite bounding faces of the cell be (OR;;,0R;) i = 1,2,3. The displace-
ments and rotations of points on these faces are respectively denoted by (u;1,u,») and (0,1,0,) i=1,2,3.
The following relationships of degrees of freedom are prescribed for points on each pair of faces (OR;;,0R)

i=1,2,3:

_ref £
g —up =uy —uy  i=1,2,3,

9,‘1—81'2:0 i:1,2,3,

(7)
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A2 ¢

Fig. 16. The Kelvin foam characteristic cell.

where ufjf are displacements of conjugate points on opposite sides chosen as reference points (e.g., (41, A2),
(Cl’ Cz), etc.).

The characteristic cell is discretized with finite elements within the nonlinear code ABAQUS using the
B32, 3-noded quadratic space beam element. Each ligament is represented by seven elements of uniform
area. The area of each element is based on the symmetric function f{&) as follows:

f(&) = <lé <

(é)—1482 02<|€|\
(&) =2574 03 <] <0.
(&) =4.993 04 < |¢ <0.

By using the beam general section feature the sectional characteristics of each beam {4,1,,J} are pre-
scribed to correspond to the values listed above. In addition, the beam is made to be shear-deformable with
the shear factor given in Eq. (5). The resultant model has 24 ligaments, 168 elements, 363 nodes and a total
of 1980 variables.

The characteristic cell was also discretized with solid elements using C3D15V prisms and C3D27 brick
elements. The philosophy behind generating the mesh was to closely match the geometry of the correspond-
ing beam element model. As mentioned above, parts of the beams were removed in the neighborhood of the
nodes in order to correctly represent the material distribution in the actual foam. The removed mate-
rial depends on the relative density. For the solid model, part of the ligaments was assigned the area
distribution f{&) while the node was a smooth version of the corresponding beam node with the material
removed (note that the two do not match exactly). As a result, for the relative densities considered
0.01 < p*/p < 0.06, the length of the ligament obeying f{&) ranges from 0.664¢ to 0.34¢.

Fig. 13b shows a 3-D model node and one ligament. Although it compares well with the beam model
node shown in Fig. 13a it is not a perfect match. The part identified by B-B’ has the f{¢) area distribution.
This part was modeled with 32 prism elements. Each node was modeled with 16 prisms and 8 brick

(8)
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elements. The triangular prisms have 18 nodes and the bricks 27 nodes all with 3 degrees of freedom. Full
integration was used for both. The full cell has 1056 elements and a total of 23,814 degrees of freedom
which makes it computationally considerably more expensive than the beam model.

4.4.3. Elastic moduli predictions

The performance of the various beam models is illustrated in Fig. 17 where predictions of the elastic
modulus E* as a function of the relative density are compared for the isotropic foam. Shown are results
from the inextensional Bernoulli-Euler beam (B-E), the extensional beam (B-E Exte.), the shear deform-
able beam, and from the FE model using B32 elements. In all cases the beam cross-section varies according
to Eq. (1). The stiffest model is the simple inextensional B-E. The effect of extensionality increases with p*.
At relative densities of about 3% and 5% the inextensional model modulus is respectively 10% and 20%
higher than the extensional model. The shear deformation plays an even more important role and can only
be neglected for foams of relative densities of less than 1%. For example, at relative densities of about 3%
and 5% the modulus of the shear deformable beam is only 74% and 62% respectively of the corresponding
beam which precludes shear deformations. Included in the figure are results generated by the FE model.
Since this beam model has the same features as the analytic extensional and shear deformable model it
yields results which are in excellent agreement with the latter.

A second set of comparisons appears in Fig. 18. Here the elastic modulus and shear modulus of isotropic
foams predicted by the extensional beam, the FE B32 and the 3D models are compared (all have the

12
E" A=1
E 1 BElnext .
(%)O 8 B-E Exte./\,’/
0.4+
7 B-E Shear Def.
0 —
0 2

4, 6
— p/p (%)

Fig. 17. Axial moduli vs. relative density calculated by different beam model assumptions.

.08
G A=1
G 1 ,
(%) 6 1 B-E Exte. ,,"
0.41
0.2
0
4 6 0 4 6
() — plp (%) (b) — p/p (%)

Fig. 18. Moduli vs. relative density calculated by beam models and the solid element model. (a) Axial modulus and (b) shear modulus.
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corrected relative density). As pointed out above, the difference between the B-E and the FE B32 model is
due to the effect of shear. The 3-D model is somewhat stiffer than the B32 model (Fig. 18a). We attribute
this small difference mainly to the fact that the node geometry was somewhat different in the two models.

The FE beam model will now be used to examine the importance of some of the realistic aspects of foams
introduced in this work. Fig. 19 shows the effect of the cross-sectional variation of foam ligaments on the
elastic constants of the isotropic Kelvin foam. Foams with Plateau border cross-sections with uniform and
nonuniform (Eq. (1)) cross-sections are compared. The effect of cross-sectional variation is very significant
with the nonuniform cross-section foam being generally stiffer. For example, at a relative density of 2% the
nonuniform foam Young’s modulus (Fig. 19a) is nearly 69% higher than the uniform foam while at 5% rel-
ative density the difference increases to 74%. The Young’s modulus to first order is governed by beam bend-
ing and, as a result, it is proportional to 7. The nonuniformity of the ligaments reduces 7 for a given relative
density as shown in Fig. 14. However, the nonuniformity makes the ligament stiffer by about a factor of 5
(difference between C; and 1/12 in Table 5) which has a stronger effect than the difference in 7.

The difference between the two sets of results is significant but smaller for the shear modulus (Fig. 19b).
The bulk modulus (Fig. 19¢) is relatively unaffected by this redistribution of material primarily because it is
governed by axial deformation which is less sensitive to this change. By contrast, Poisson’s ratio is slightly
reduced by cross-sectional nonuniformity (Fig. 19d). This stiffening effect carries through to anisotropic
foams as well.

The effect of cell anisotropy in the elastic properties is illustrated in Fig. 20 where results for A =1, 1.2
and 1.4 are presented for foams with nonuniform cross-section. The modulus in the x;-direction increases

—— Non-Uniform Xsc
E 4 ----- Uniform Xsc

0.2

(%)

r=1
0 . . . . . 0

A=1

0 2 4 6
0 2 4 6
b) — PP (d) — plp (%)

Fig. 19. Material constants vs. relative density for ligaments with uniform and nonuniform cross-sectional areas.
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Fig. 20. Material constants vs. relative density for foams with different levels of anisotropy.

(Fig. 20a) while the one in the x,-direction decreases (Fig. 20b). For example, at a relative density of 3%, A
of 1.2 and 1.4 result in an increase in E7 of 36% and 69% respectively and a corresponding decrease in £ of

17% and 35%. The equations in Table 4 show that these changes are directly related to the geometric var-
iable A.
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Table 6

Comparison between measured (E-) and calculated (E,) elastic moduli foam elastic moduli

Foam ppi A p: % Ej Ej Ej E; )
o (%) 7z (%) z (%) 7 (%) 7 (%)

3 1.432 2.18 0.227 0.152 0.0701 0.0535

10 1.360 247 0.181 0.181 0.0707 0.0749

20 1.281 2.36 0.200 0.151 - 0.0747

45 1.256 2.44 0.215 0.156 0.103 0.0819

100 1.233 2.82 0.229 0.203 0.128 0.113

The shear moduli G}, = G}, remain unaffected (Fig. 20c) by 4 whereas G, gets reduced as A increases
(Fig. 20d). Fig. 20e shows that bulk modulus also gets reduced as 4 increases. For the isotropic case x*
is governed by membrane deformations (Table 4). Anisotropy makes k* depend also on bending deforma-
tions which generally reduce the stiffness. Poisson’s ratio v}, is seen in Table 4 to be proportional to /% asa
result it increases significantly with 4 as demonstrated in Fig. 20f. By contrast v3, (Fig. 20g) and v;; (Fig.
20h) are reduced as A increases.

Table 6 shows a direct comparison of the measured (£, = 1,2) and calculated (E;, o =1,2) values of
these moduli using the formulas in Table 4b (including the effect of shear). The predicted moduli are some-
what smaller than the measured values with the biggest difference being 33% for the 3 ppi foam. This fav-
orable comparison suggests that the idealizations made in the geometry of the model foam are reasonable.
It also confirms that factors included in the present analysis such as axial and shear deformations, the non-
uniformity of the ligament cross-sections and the material distribution at the nodes are essential in getting
this level of agreement between measurements and predictions.

5. Summary and conclusions

This study has been concerned with the understanding of the response of open cell foams to uniaxial
compression. A set of polyester urethane foams covering a range of cell sizes and with relative densities
in the range of 2.2-2.8% were considered. Their microstructures consist of interconnected frameworks
forming cells with nearly straight edges. The cells are irregular polyhedra with 9-17 faces. The average num-
ber of faces per cell was found to be 13.7. Faces had anywhere from 3 to 7 sides while the average number of
sides per face was close to 5. Cells were found to be elongated in the rise direction, a characteristic common
to many foams. The anisotropy ranged from A = 1.43 in the coarser cell foam, to 1.23 in the finer cell one.
Because of the way this particular type of foam is manufactured, variation of cell size within each foam was
within a relatively narrow range. In addition, the five microstructures were found to scale with cell size (at
least to a first order approximation). Cell ligaments have the characteristic three-cusp, Plateau border,
cross-section. Their cross-sectional area was found to vary along the length increasing closer to the cell
nodes.

Each of the five foams was compressed between rigid plates at prescribed displacement rates. Tests were
performed along the rise and transverse directions. Along the rise direction the foams exhibit a force-dis-
placement response shared with many other cellular materials. It starts with a nearly linear elastic regime
which terminates into a limit load followed by an extensive load plateau. The plateau is followed by a sec-
ond branch of stiff response. Because of the cell anisotropy, in the transverse direction the foams were
found to be initially more compliant with the modulus being only 1/3 to 1/2 the corresponding values in
the rise direction. Surprisingly, the nonlinear part of the response exhibited no load maximum and main-
tained a monotonically increasing trajectory. The foams are polymeric and, as a result, they exhibit visco-
elastic characteristics which have been briefly outlined. Uniaxial tests on single ligaments showed that the
base material also exhibits a mild nonlinearity.
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A sequence of models for predicting all mechanical foam properties of interest has been developed. The
foam is idealized to be periodic using the space filling Kelvin cell assigned the geometric characteristics
found in the actual foams. The cells are elongated in the rise direction; the ligaments are assumed to be
straight, to have Plateau border cross-sections and nonuniform cross-sectional area distribution. The liga-
ments are modeled as shear-deformable extensional beams. The base material is assumed to be linearly elas-
tic. A special provision is made to account for the way their intersections at the nodes affect the relative
density of the model.

The analytical results in Part I deal with the prediction of the initial elastic moduli of the anisotropic
foams. Closed form expressions have been developed for the moduli by analyzing custom microsections.
A characteristic cell of the anisotropic microstructure has been established. This was discretized with appro-
priate shear-deformable beam elements. Numerical results derived from the characteristic cell loaded
appropriately, were shown to be in agreement with the analytical expressions for the moduli. The axial
moduli of the foams used in the experiments are calculated individually. Comparison between measure-
ments and predictions is very favorable. The paper finishes with results from a limited parametric study
of the elastic moduli.

Based on the results presented, it can be concluded that the Kelvin cell model developed is capable of
capturing the initial elastic behavior of the foams analyzed. The results also confirm that factors included
in the model such as the extensionality and shear deformability of the beam ligaments, modeling of the Pla-
teau border cross-sectional shape and its nonuniformity along the ligament length, and correcting for the
material distribution at the nodes are essential in getting this favorable agreement between measurements
and predictions. The nonlinear aspects including the crushing behavior of the foams are addressed next in
Part II.
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